Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Water Res ; 255: 121507, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38537490

ABSTRACT

Additional organics are generally supplemented in the sulfide-driven autotrophic denitrification system to accelerate the denitrification rate and reduce sulfate production. In this study, different concentrations of sodium acetate (NaAc) were added to the sulfide-driven autotrophic denitrification reactor, and the S0 accumulation increased from 7.8% to 100% over a 120-day operation period. Batch experiments revealed a threefold increase in total nitrogen (TN) removal rate at an Ac--C/N ratio of 2.8 compared to a ratio of 0.5. Addition of organic carbon accelerated denitrification rate and nitrite consumption, which shortened the emission time of N2O, but increased the N2O production rate. The lowest N2O emissions were achieved at the Ac--C/N ratio of 1.3. Stable isotope fractionation is a powerful tool for evaluating different reaction pathways, with the 18ε/15ε values in nitrate reduction ranging from 0.5 to 1.0. This study further confirmed that isotope fractionation can reveal denitrifying nutrient types, with the 18ε (isotopic enrichment factor of oxygen)/15ε (isotopic enrichment factor of nitrogen) value approaching 1.0 for autotrophic denitrification and 0.5 for heterotrophic denitrification. Additionally, the 18ε/15ε values can indicate changes in nitrate reductase. There is a positive correlation between the 18ε/15ε values and the abundance of the functional gene napA, and a negative correlation with the abundance of the gene narG. Moreover, 18ε and 15ε were associated with changes in kinetic parameters during nitrate reduction. In summary, the combination of functional gene analysis and isotope fractionation effectively revealed the complexities of mixotrophic denitrification systems, providing insights for optimizing denitrification processes.

2.
Sci Total Environ ; 915: 169957, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38242446

ABSTRACT

This study developed a two-stage process, including Tetrasphaera-dominated enhanced biological phosphorus-removal (EBPR(T)) sequencing batch reactor (SBR), followed by sulfur autotrophic denitrification (SADN) SBR, to achieve advanced nutrients removal from low VFAs wastewater. The removal efficiencies of nitrogen and phosphorus (PO43--P) reached 99 % with effluent PO43--P and total inorganic nitrogen (TIN) below 0.5 mg/L and 1 mg/L in EBPR(T) and SADN SBR, respectively. Mechanism analysis indicated that as increasing drainage ratio and complex carbon sources, free amino acids, glycogen, and PHA served as the endogenous carbon sources of Tetrasphaera to store energy. SADN contributed to approximately 80 % of nitrogen removal. DNA and cDNA results indicated Tetrasphaera was shifted from clade 2 to clade 1 after increasing the drainage ratio and the complexity of the carbon source, and Tetrasphaera (50.95 %) and Ca. Accumulibacter (9.12 %) were the most important functional microorganisms synergized to remove phosphorus at the transcriptional level in EBPR(T). Thiobacillus (45.97 %) and Sulfuritalea (9.24 %) were the dominant sulfur autotrophic denitrifiers at gene and transcriptional level in SADN. The results suggested that the EBPR(T) - SADN SBRs have great nutrient removal performance in treating low VFAs wastewater without additional carbon sources.


Subject(s)
Phosphorus , Wastewater , Phosphorus/metabolism , Denitrification , Bioreactors , Nutrients , Carbon , Sulfur , Nitrogen/metabolism , Sewage
3.
Environ Sci Technol ; 58(6): 2902-2911, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38294202

ABSTRACT

Conventional biological nutrient removal processes rely on external aeration and produce significant carbon dioxide (CO2) emissions. This study constructed a phototrophic simultaneous nitrification-denitrification phosphorus removal (P-SNDPR) system to treat low carbon to nitrogen (C/N) ratios wastewater and investigated the impact of sludge retention time (SRT) on nutrient removal performance, nitrogen conversion pathway, and microbial structure. Results showed that the P-SNDPR system at SRT of 15 days had the highest nutrient removal capacity, achieving over 85% and 98% removal of nitrogen and phosphorus, respectively, meanwhile maintaining minimal CO2 emissions. Nitrogen removal was mainly through assimilation at SRTs of 5 and 10 days, and nitrification-denitrification at SRTs of 15 and 20 days. Stable partial nitrification was facilitated by photoinhibition and low DO levels. Flow cytometry sorting technique results revealed SRT drove community structural changes in translational activity (BONCAT+) microbes, where BONCAT+ microbes were mainly simultaneous nitrogen and phosphorus removal bacteria (Candidatus Accumulibacter), denitrifying bacteria (Candidatus Competibacter and Plasticicumulans), ammonia-oxidizing bacteria (Nitrosomonas), and microalgae (Chlorella and Dictyosphaerium). The P-SNDPR system represents a novel, carbon-neutral process for efficient nutrient removal from low C/N ratio wastewater without aeration and external carbon source additions.


Subject(s)
Chlorella , Wastewater , Nitrification , Denitrification , Phosphorus/metabolism , Nitrogen/chemistry , Nitrogen/metabolism , Carbon Dioxide , Chlorella/metabolism , Waste Disposal, Fluid/methods , Bioreactors/microbiology , Sewage/microbiology
4.
J Environ Manage ; 351: 119839, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38104464

ABSTRACT

Photo-enhanced Biological Phosphorus Removal (PEBPR) systems, promising wastewater treatment technology, offer efficient phosphorus removal without external oxygen. However, comprehending the impact of sludge retention time (SRT) on the system is crucial for successful implementation. This study investigated the SRT effect on nutrient fate, microbial community, and bacterial phototolerance in PEBPR systems. PEBPR systems exhibited good bacterial phototolerance at SRT of 10, 15, and 20 d, with optimal phosphorus-accumulation metabolism observed at SRT of 10 and 15d. However, at SRT of 5d, increased light sensitivity and glycogen-accumulating organisms (GAOs) growth resulted in poor P removal (71.9%). Accumulibacter-IIC were the dominant P accumulating organisms (PAOs) at SRT of 10, 15, and 20 d. Accumulibacter-I, IIC and IIF were the major PAOs at SRT of 5 d. The decrease in SRT promoted the microalgal population diversity, and Dictyosphaerium and Chlorella were the major microalgal species in this study. Flow cytometry results revealed high light intensity triggered intracellular Fe2+ efflux, limiting translation activity and metabolism. Moreover, PAOs had lower phototolerance than GAOs due to Poly-P bound intracellular Mg2+ affecting enzyme activity. This study provides an in-depth understanding of PEBPR systems operation strategy toward environmentally sustainable wastewater treatment.


Subject(s)
Chlorella , Microbiota , Sewage , Phosphorus/metabolism , Bioreactors/microbiology , Bacteria/metabolism , Nutrients
5.
Water Res ; 246: 120742, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37857010

ABSTRACT

Partial nitrification (PN) and high glycogen accumulating metabolism (GAM) activity are the basis for efficient nitrogen (N) and phosphorus (P) removal in simultaneous nitrification endogenous denitrification and phosphorus removal (SNDPR) systems. However, achieving these processes in practical operations is challenging. This study proposes that light irradiation is a novel strategy to enhance the nutrient removal performance of the SNDPR system with low carbon to nitrogen ratios (C/N of 3.3-4.1) domestic wastewater. Light energy densities (Es) of 55-135 J/g VSS were found to promote the activity of ammonia-oxidizing bacteria (AOB) and GAM, while inhibiting the activity of nitrite-oxidizing bacteria (NOB) and polyphosphate accumulating metabolism (PAM). Long-term exposure to different light patterns at Es of 55-135 J/g VSS revealed that continuous light rapidly achieved PN by inhibiting NOB activity and promoted the growth of glycogen accumulating organisms (GAOs), allowing the removal of above 82 % N and below 80 % P. Intermittent light maintained stable PN by inhibiting the activity and growth of NOB and promoted the growth of polyphosphate accumulating organisms (PAOs) with high GAM activity (Accmulibacer IIC-ii and IIC-iii), allowing the removal of above 82 % N and 95 % P. Flow cytometry and enzyme activity assays showed that light promoted GAM-related enzyme activity and the metabolic activity of partial Accmulibacer II over other endogenous denitrifying bacteria, while inhibiting NOB translation activity. These findings provide a new approach for enhancing nutrient removal, especially for achieving PN and promoting GAM activity, in SNDPR systems treating low C/N ratio domestic wastewater using light irradiation.


Subject(s)
Nitrification , Wastewater , Denitrification , Phosphorus/metabolism , Waste Disposal, Fluid , Bioreactors/microbiology , Nitrogen/metabolism , Bacteria/metabolism , Glycogen/metabolism , Nitrites/metabolism , Polyphosphates/metabolism , Sewage
6.
Environ Res ; 232: 116341, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37290623

ABSTRACT

Anaerobic ammonium (NH4+ - N) oxidation coupled with sulfate (SO42-) reduction (sulfammox) is a new pathway for the autotrophic removal of nitrogen and sulfur from wastewater. Sulfammox was achieved in a modified up-flow anaerobic bioreactor filled with granular activated carbon. After 70 days of operation, the NH4+ - N removal efficiency almost reached 70%, with activated carbon adsorption and biological reaction accounting for 26% and 74%, respectively. Ammonium hydrosulfide (NH4SH) was found in sulfammox by X-ray diffraction analysis for the first time, which confirmed that hydrogen sulfide (H2S) was one of the sulfammox products. Microbial results indicated that NH4+ - N oxidation and SO42- reduction in sulfammox were carried out by Crenothrix and Desulfobacterota, respectively, in which activated carbon may operate as electron shuttle. In the 15NH4+ labeled experiment, 30N2 were produced at a rate of 34.14 µmol/(g sludge·h) and no 30N2 was detected in the chemical control group, proving that sulfammox was present and could only be induced by microorganisms. The 15NO3- labeled group produced 30N2 at a rate of 88.77 µmol/(g sludge·h), demonstrating the presence of sulfur-driven autotrophic denitrification. In the adding 14NH4+ and 15NO3- group, it was confirmed that NH4+ - N was removed by the synergy of sulfammox, anammox and sulfur-driven autotrophic denitrification, where the main product of sulfammox was nitrite (NO2-) and anammox was the main cause of nitrogen loss. The findings showed that SO42- as a non-polluting species to environment may substitute NO2- to create a new "anammox" process.


Subject(s)
Ammonium Compounds , Sewage , Charcoal , Denitrification , Nitrogen/analysis , Nitrogen Dioxide/analysis , Oxidation-Reduction , Bioreactors , Sulfur
7.
J Hazard Mater ; 451: 131157, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36889076

ABSTRACT

Sulfate in wastewater can be reduced to sulfide and its impact on the stability of enhanced biological phosphorus removal (EBPR) is still unclear. In this study, the metabolic changes and subsequent recovery of polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) were investigated at different sulfide concentrations. The results showed that the metabolic activity of PAOs and GAOs was mainly related to H2S concentration. Under anaerobic conditions, the catabolism of PAOs and GAOs was promoted at H2S concentrations below 79 mg/L S and 271 mg/L S, respectively, and inhibited above these concentrations; whereas anabolism was consistently inhibited in the presence of H2S. The phosphorus (P) release was also pH-dependent due to the intracellular free Mg2+ efflux from PAOs. H2S was more destructive to the esterase activity and membrane permeability of PAOs than those of GAOs and prompted intracellular free Mg2+ efflux of PAOs, resulting in worse aerobic metabolism and subsequent recovery of PAOs than GAOs. Additionally, sulfides facilitated the production of extracellular polymeric substances (EPS), especially tightly bound EPS. The amount of EPS in GAOs was significantly higher than that in PAOs. The above results indicated that sulfide had a stronger inhibition to PAOs than GAOs, and when sulfide was present, GAOs had a competitive advantage over PAOs in EBPR.


Subject(s)
Glycogen , Polyphosphates , Sulfides , Wastewater , Aerobiosis , Bioreactors , Glycogen/metabolism , Phosphorus/pharmacology , Phosphorus/metabolism , Polyphosphates/metabolism , Wastewater/chemistry , Sulfides/analysis , Sulfides/metabolism , Waste Disposal, Fluid
8.
Sci Total Environ ; 855: 158653, 2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36169022

ABSTRACT

The significance of inorganic carbon (IC) for anaerobic ammonium oxidation (anammox) bacteria has been verified. However, the regulation of metabolic pathways under IC stress is not clear, limiting the optimization of IC supply. In this study, the regulatory pathways at IC concentration of 5-150 mg/L were explored to achieve optimal control of IC. The results show that the changes of metabolic pathway under IC stress determined anammox characteristics. At IC concentration of 5 mg/L, the anammox activity distinctly decreased due to the guanosine tetraphosphate (ppGpp) -mediated regulation under IC limitation. With less than 15 mg/L of IC, the decrease of carbon fixation limited the biosynthesis of gluconeogenesis and amino acids, causing the decline of extracellular polymeric substance synthesis. With more than 50 mg/L of IC, the improvement of purine and pyrimidine metabolism enhanced the electron transport capacity and growth potential of anammox bacteria. This study provides metabolic insights into IC influence on anammox consortia and a novel method of IC concentration optimization using metabolomics analysis.


Subject(s)
Ammonium Compounds , Carbon , Carbon/metabolism , Bioreactors/microbiology , Nitrogen/metabolism , Extracellular Polymeric Substance Matrix/metabolism , Anaerobic Ammonia Oxidation , Oxidation-Reduction , Anaerobiosis , Bacteria/metabolism , Ammonium Compounds/metabolism
9.
Sci Total Environ ; 842: 156960, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35760169

ABSTRACT

Titanium salt coagulant, as a new type of water treatment agent, has been widely studied, but most researches do not consider its effect on the biological treatment. In this study, different doses of TiCl4 were added to the biological phosphorus removal (BPR) system to investigate the impact of TiCl4 on BPR. The results showed that the addition of TiCl4 not only significantly reduced the phosphorus concentration in effluent (below 0.5 mg/L), but also kept it stable. Moreover, the sedimentation performance of activated sludge was improved, which was superior to the control group. According to the results of flow cytometry (FCM), a small amount of TiCl4 significantly improved the bioactivities, but excessive dosage caused inhibition. When the dosage of TiCl4 below 20 mg/L, polyphosphate accumulating metabolism (PAM) was strengthened. In addition, the richness of microbial community and the relative abundance of Candidatus Accumulibacter clades also increased. However, when the dosage reached 60 mg/L, the relative abundance of Candidatus Competibacter increased and the BPR system was deteriorated. This study suggests that the addition of appropriate concentration of TiCl4 can realize the synergistic enhancement of biological and chemical phosphorus removal in sewage treatment.


Subject(s)
Phosphorus , Wastewater , Bioreactors , Phosphorus/metabolism , Sewage , Titanium
10.
Sci Total Environ ; 842: 156913, 2022 Oct 10.
Article in English | MEDLINE | ID: mdl-35753450

ABSTRACT

Tetrasphaera are polyphosphate accumulating organisms (PAOs) that play an important role in enhanced biological phosphorus removal (EBPR) from wastewater. The effect of a wide range of temperature changes (1-30 °C) on phosphorus removal, metabolism and clade-level community structure of Tetrasphaera-dominated PAOs was investigated. At 10 °C, the bioactivities of Tetrasphaera-dominated communities were obviously inhibited and the EBPR efficiency was only 73 %. Yet at 20-30 °C, EBPR efficiency reached 99 % and the relative abundance of Tetrasphaera was up to 90 %. The temperature variation changed the community distribution of Tetrasphaera clades, which was possibly a main reason for EBPR performance. Amino acids and PHA with different contents were intracellular metabolite of Tetrasphaera-dominated communities during phosphorus release and uptake at different temperatures. Moreover, Tetrasphaera fermented protein and amino acids and released VFAs. The outcomes suggested the great potential of Tetrasphaera-PAOs in the treatment of wastewater with varying temperatures and limited carbon sources.


Subject(s)
Actinomycetales , Phosphorus , Actinomycetales/metabolism , Amino Acids/metabolism , Bioreactors , Phosphorus/metabolism , Polyphosphates/metabolism , Temperature , Wastewater
11.
Chemosphere ; 286(Pt 3): 131895, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34435576

ABSTRACT

Partial denitrification granular sludge (PDGS) and denitrification granular sludge (DGS) play an important role in nitrogen removal from wastewater. However, the inherent cause of aggregation capacity related to the ratio of COD to nitrogen (COD/N) is still unclear. In this study, metabolomics analysis was combined with microbiological analyses, granular performance and extracellular polymeric substances (EPS) structure to explore the granulation mechanism at different influent COD/N ratios. The results showed that the higher COD/N ratio selectively enhanced the gluconeogenesis pathway, purine and pyrimidine metabolism pathway, resulting in more extracellular polysaccharide (PS) excretion and floc sludge. The absence of carbon source weakened tricarboxylic acid cycle (TCA) reaction, resulting in NAD+ and ADP decrease, nitrite accumulation and change of microbial community structure. The amino acids biosynthesis pathway was enhanced under low COD/N ratio, which promoted the hydrophobicity of EPS. PDGS had stronger Acyl-homoserine lactones (AHLs)-based quorum sensing (QS) than DGS during the operational period. CO8-HSL, C8-HSL and C6-HSL, as the main form of AHLs, played a dominating role in DGS and PDGS. Batch tests illustrated that adding AHLs obviously improved the synthesis of the amino acids, threonine (Thr), tryptophan (Trp), methionine (Met) and glycine (Gly). Dosing AHLs regulated PS synthesis only at a high COD/N ratio. The glucose-6P, glycerate-3p and UDP-Glc were up-regulated only in DSG, which increased the hydrophilic groups in EPS. The results not only provided the new insights into the metabolism of denitrifying granular sludge, but also indicated the application potential of the technologies regarding start-up and operation of granule sludge.


Subject(s)
Denitrification , Quorum Sensing , Acyl-Butyrolactones , Bioreactors , Metabolomics , Sewage
12.
Sci Total Environ ; 799: 149291, 2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34364268

ABSTRACT

Achieving enhanced biological phosphorus removal dominated by Tetrasphaera utilizing waste activated sludge (WAS) as carbon source could solve the problems of insufficient carbon source and excessive discharge of WAS in biological phosphorus removal. Up to now, the sludge reduction ability of Tetrasphaera remained largely unknown. Furthermore, the difference between traditional sludge fermentation and sludge fermentation dominated by Tetrasphaera was still unclear. In this study, two different sequencing batch reactors (SBRs) were operated. WAS from SBR-parent was utilized as sole carbon source to enrich Tetrasphaera with the relative abundance of 91.9% in SBR-Tetrasphaera. PO43--P removal and sludge reduction could simultaneously be achieved. The effluent concentration of PO43--P was 0, and the sludge reduction efficiency reached about 44.14% without pretreatment of sludge. Cell integrity detected by flow cytometry, the increase of DNA concentration in the sludge supernatant and decrease of particle size of activated sludge indicated that cell death and lysis occurred in sludge reduction dominated by Tetrasphaera. Stable structure of activated sludge was also damaged in this process, which led to the sludge reduction. By analyzing the excitation-emission matrix spectra of extracellular polymeric substances and the changes of carbohydrate and protein concentration, this study proved that slowly biodegradable organics (e.g., soluble microbial byproduct, tyrosine and tryptophan aromatic protein) could be better hydrolyzed and acidized to volatile fatty acids (VFAs) in sludge fermentation dominated by Tetrasphaera than traditional sludge fermentation, which provided carbon source for biological nutrients removal and saved operation cost in wastewater treatment.


Subject(s)
Phosphorus , Sewage , Bioreactors , Carbon , Fermentation , Nitrogen , Waste Disposal, Fluid , Wastewater
13.
Adv Mater ; 32(45): e2003453, 2020 Nov.
Article in English | MEDLINE | ID: mdl-33015916

ABSTRACT

The Plateau-Rayleigh instability (PRI) is a well-known phenomenon where a liquid column always breaks up into droplets to achieve the minimization of surface energy. It normally leads to the non-uniformity of a liquid film, which, however, is unfavorable for the fluid coating process. So far, strategies to overcome this instability rely on either the surfactants, UV/high-temp curing treatments, or specific chemical reactions, which suffer from both limited liquid composition and complicated experimental conditions. Natural mulberry silk, a typical composite fiber, is produced by silkworms through a similar fluidic coating process, but exhibits a remarkably uniform and smooth surface. Drawing inspiration, it is revealed that the unique dual parallel fibers are capable of overcoming the PRI during the fluid coating process. Such anti-PRI ability is attributable to the changes in the Laplace pressure difference caused by the alternative asymmetry of the liquid film, as has been demonstrated by both a force analysis on the irregular liquid film and theoretical simulation according to the stability of the liquid on parallel fibers in the fluid coating process. The strategy is applicable for preparing various smooth functional coatings on fibers, which offers new perspectives for fluid coating and microfluidic technologies.

14.
Enzyme Microb Technol ; 139: 109567, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32732026

ABSTRACT

Sodium acetate has been most commonly used as the external carbon source to achieve successful performance of full-scale enhanced biological phosphorus removal (EBPR) processes, but its microbial mechanism for the improvement of phosphorus removal performance was still unclear. DNA based stable-isotope probing (DNA-SIP) is able to discriminate the metabolic activity of different microbes for specific substrates, thus it was applied to explore the different effects of sodium acetate on the community structure of Candidatus Accumulibacter (hereafter called Accumulibacter) and Candidatus Competibacter (hereafter called Competibacter) in a modified University of Cape Town (MUCT) process treating the real domestic sewage. Results showed that acetate addition significantly improved the abundance of Accumulibacter and Competibacter in MUCT. Accumulibacter clade IID exhibited the highest proportion in all clades before and after acetate supplementation but the proportion decreased from 95.4 % on day 23-66.3% on day 95. Contrarily, the proportion of clade IIF increased from 0.9% to 24%. DNA-SIP incubation found that the ratio of Accumulibacter in the heavy fractions to the total quantities increased faster than that of Competibacter, which successfully revealed the acetate assimilating precedence of Accumulibacter over Competibacter. Besides, the ratios of Accumulibacter clade IIF in heavy fraction increased by 22.3 %, exhibited a higher metabolic activity than other clades. Adequate acetate accomplied with high temperature possibly promoted the preferential proliferation of clade ⅡF, which provided a way to enrich clade IIF. This is the first study that successfully applied DNA-SIP to discriminate the acetate metabolic activity of Accumulibacter and Competibacter, and Accumulibacter clades.


Subject(s)
Alphaproteobacteria/metabolism , Phosphorus/metabolism , Sodium Acetate/pharmacology , Water Purification , Alphaproteobacteria/genetics , Carbon Isotopes/chemistry , DNA Probes/chemistry , DNA, Bacterial/genetics , Isotope Labeling/methods , Sewage
15.
Environ Sci Pollut Res Int ; 27(30): 37877-37886, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32617817

ABSTRACT

The simultaneous chemical phosphorus removal (SCPR) process has been widely applied in wastewater treatment plants (WWTPs) due to the high phosphorus removal efficiency through the synergy of biological and chemical phosphorus removal (BPR and CPR). However, phosphorus removal reagents could affect the bacterial community structure in the SCPR system and further affect the BPR process. The BPR phenotypes and community structures in the SCPR system, especially the population of polyphosphate-accumulating organisms (PAOs), are not completely clear. In order to clarify these problems, the phosphorus removal performance and the PAO population in a full-scale SCPR system were investigated. Results showed that diverse PAOs still existed in the SCPR system though the BPR phenotypes were not observed. However, the relative abundances of Accumulibacter and Tetrasphaera, the two most important genera of PAOs, were only 0.59% and 0.20%, respectively, while the relative abundances of Competibacter and Defluviicoccus, two genera of glycogen-accumulating organisms (GAOs), were as high as 5.77% and 1.28%, respectively. Batch tests showed that PAOs in the SCPR system still had a certain polyphosphate accumulating metabolic activity, which could gradually recover after stopping the addition of chemical reagents. This study provided a microbiological basis for the SCPR system to recover the enhanced biological phosphorus removal (EBPR) performance under suitable conditions, which could reduce the dosage of chemical reagents and the operational cost.


Subject(s)
Bioreactors , Phosphorus , Glycogen , Polyphosphates , Wastewater
16.
Bioresour Technol ; 306: 123108, 2020 Mar 03.
Article in English | MEDLINE | ID: mdl-32169510

ABSTRACT

The dynamic response mechanism of Candidatus Accumulibacter clades to environmental factors in enhanced biological phosphorus removal (EBPR) was unclear. This study investigated the relationship between the transcriptional responses of Candidatus Accumulibacter clades and environmental dynamics. Results suggested that Candidatus Accumulibacter clade IIA only responded in initial 20 and 30 min of P-release and P-uptake stage, respectively, and was also the first clade to stop responding among the six Candidatus Accumulibacter clades. Clade IIC and IID responded at rising stage of P-release and P-uptake rate. Clade IA and IIB responded at decreasing stage of P-release and P-uptake rate. The transcriptional response duration of clade IIF was the longest, which constantly responded throughout anaerobic, anoxic and oxic phase. The transcriptional responses of Candidatus Accumulibacter clades to environmental dynamics revealed the microorganisms actually working in P-release and P-uptake, and gave a new insight into the transcriptional responses related to the EBPR performance.

17.
Bioresour Technol ; 297: 122431, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31780243

ABSTRACT

Polyaluminium chloride (PAC) was added into the biological phosphorus removal (BPR) systems to investigate the populations of polyphosphate and glycogen accumulating organisms (PAOs and GAOs). Typical BPR performed under Al:P of 1:1, while BPR almost disappeared at Al:P of 4:1. Even with high PAC addition, PAOs still existed in systems. Compared to the BPR with no PAC addition, the relative abundance of Accumulibacter, Tetrasphaera and Commnadaceae slightly increased with PAC addition. The relative abundance of Dechloromonas was improved from 0.87% to 3.82%, becoming the most dominant PAOs. The specific structures of Accumulibacter and Tetrasphaera changed little, but that of Dechloromonas and Comamonadaceae significantly altered. Regarding the GAOs, the relative abundance of Competibacter and Defluviicoccus significantly declined. Additionally, PAC addition effectively inhibited the proliferation of filamentous bacteria, indicating its potential in inhibiting the sludge filamentous bulking. This study provided guidance for the selection of the phosphorus removal process and operational conditions.


Subject(s)
Glycogen , Phosphorus , Aluminum Hydroxide , Bioreactors , Polyphosphates
18.
Bioresour Technol ; 297: 122454, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31786040

ABSTRACT

The microbial community in endogenous denitrification and denitrifying phosphorus removal treatment at transcription level was unknown. This study first confirmed the expression of actually active bacteria in endogenous denitrification and denitrifying phosphorus removal system to treat low C/N municipal wastewater. No external carbon source was added to influent wastewater. The cDNA high throughput sequencing showed that Candidatus Accumulibacter was the most effective polyphosphate accumulating organisms (PAOs) that actually worked rather than Dechloromonas, which was different from the result at gene level. Reverse transcriptional PCR (RT-PCR) and analysis of Variance (ANOVA) suggested that the ratios of dead or dormant bacteria could monitor wastewater treatment process. Identification of active microbial community at transcription level demonstrated that the synergy of endogenous denitrification by glycogen accumulating organisms (GAOs) and denitrifying phosphorus removal by Candidatus Accumulibacter fully utilized the internal carbon source, and effectively solved the problem of carbon source deficiency in municipal wastewater treatment.


Subject(s)
Microbiota , Wastewater , Bioreactors , Carbon , Denitrification , Glycogen , Phosphorus
19.
ACS Appl Mater Interfaces ; 10(32): 26819-26824, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30058324

ABSTRACT

Fibers exhibit excellent performance in liquid manipulation that is normally aroused by either the structural or the chemical gradient. Here, we developed radially arranged fiber arrays with different fibrous elasticities that exhibited distinctly different performances in liquid manipulation in terms of the fibrous elastocapillary coalescence, the high-efficiency water encapsulation, and the inability to manipulate liquid. It is proposed that the fiber elasticity acts as a driving force when interacting with liquid, equivalent with the structural and chemical gradient. We revealed the fundamental premise of how fiber elasticity affects its dynamic wetting behaviors, which sheds new light on the design of fiber systems with different liquid-manipulation abilities.

20.
Adv Mater ; 29(45)2017 Dec.
Article in English | MEDLINE | ID: mdl-29024229

ABSTRACT

Natural fibers have versatile strategies for interacting with water media and better adapting to the local environment, and these strategies offer inspiration for the development of artificial functional fibers with diverse applications. Wetting on fibers is a dynamic liquid-moving process on/in fibrous systems with various patterns, and the process is normally driven by the structural gradient, chemical gradient, elasticity of a single fiber, or the synergistic effect of these factors in multiple fibers in an integrated system in which the spatial geometry of the fibers is involved. Compared with the directional liquid movement on a single fiber, wetting on multiple fibers in both the micro- and macroscales is particularly fascinating, with various performances, including directional liquid transport, controllable liquid transfer, efficient liquid encapsulation, and capillary-induced fibrous coalescence. Based on these properties, fibrous materials offer an alternative open system for liquid manipulation that is applicable to various functional liquid materials. Here, recent achievements in bioinspired dynamic wetting on multiple fibers are highlighted, and perspectives on future directions are presented.

SELECTION OF CITATIONS
SEARCH DETAIL
...